CS 450 - Numerical Analysis

Spring 2022

Numerical AnalysisCS450B331427LCD30930 - 1045 W F  180 Bevier Hall Paul Fischer
Numerical AnalysisCS450B431430LCD30930 - 1045 W F  180 Bevier Hall Paul Fischer
Numerical AnalysisCSE401B331432LCD30930 - 1045 W F  180 Bevier Hall Paul Fischer
Numerical AnalysisCSE401B431434LCD30930 - 1045 W F  180 Bevier Hall Paul Fischer
Numerical AnalysisECE491B331436LCD30930 - 1045 W F  180 Bevier Hall Paul Fischer
Numerical AnalysisECE491B431438LCD30930 - 1045 W F  180 Bevier Hall Paul Fischer
Numerical AnalysisMATH450B331440LCD30930 - 1045 W F  180 Bevier Hall Paul Fischer
Numerical AnalysisMATH450B431443LCD30930 - 1045 W F  180 Bevier Hall Paul Fischer

Official Description

Linear system solvers, optimization techniques, interpolation and approximation of functions, solving systems of nonlinear equations, eigenvalue problems, least squares, and quadrature; numerical handling of ordinary and partial differential equations. Course Information: Same as CSE 401, ECE 491, and MATH 450. 3 undergraduate hours. 3 or 4 graduate hours. Credit is not given for both CS 450 and CS 457. Prerequisite: One of CS 101 or CS 125; one of CS 357, MATH 257, MATH 415, or MATH 416; MATH 285.

Course Director


Scientific Computing : An Introductory Survey, 2nd E, by Michael T. Heath

Learning Goals

Analyze the conditioning of common numerical problems such as solving a linear system, finding eigenvalues, numerical differentiation and integration, etc. (1)

Calculate numerical approximations to solutions to linear and nonlinear systems, eigenvalues/eigenvectors, optimization problems, integrals, derivatives, and solutions to differential equations.(6)

Compare the accuracy and cost of different numerical methods for solving a numerical problem. (1)(6)

Estimate the accuracy and efficiency of numerical approximations.(6)

Write code to solve numerical problems.(2)(6)

Design and carry out numerical experiments to test various numerical methods. (2)(6)

Topic List

Approximations, Error Analysis, and Floating-Point Arithmetic
Systems of Linear Equations
Linear Least Squares
Eigenvalue Problems
Nonlinear Equations
Numerical Integration and Differentiation
Initial Value Problems for ODEs
Boundary Value Problems for ODEs
Partial Differential Equations
Fast Fourier Transform

Required, Elective, or Selected Elective

Selected Elective.

Last updated

2/18/2019by Luke Olson